Abstract

Among the key features of hot and dense QCD matter produced in ultra-relativistic heavy-ion collisions at RHIC is its very low shear viscosity, indicative of the properties of a near-ideal fluid, and a large opacity demonstrated by jet energy loss measurements. In this work, we utilize a microscopic transport model based on the Boltzmann equation with quark and gluon degrees of freedom and cross sections calculated from perturbative quantum chromodynamics to simulate an ideal quark–gluon plasma in full thermal and chemical equilibrium. We then use the Kubo formalism to calculate the shear viscosity to entropy-density ratio of the medium as a function of temperature and system composition. One of our key results is that the shear viscosity over entropy-density ratio η/s becomes invariant to the chemical composition of the system when plotted as a function of energy-density instead of temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.