Abstract

We analyze how recent computations of the shear viscosity $\eta$ in the core of superfluid neutron stars affect the r-mode instability window. We first analyze the contribution of superfluid phonons to the viscosity, both in their hydrodynamical and ballistic regime. We also consider the recent computation of $\eta$ arising from the collisions of electrons with electrons and protons by Shternin and Yakovlev, and discuss how the interactions among superfluid phonons and electrons might contribute to the shear viscosity. For assessing the r-mode instability window we compare the shear viscosity due to phonons in the hydrodynamical regime with respect to the shear viscosity due to electron collisions. Only at high temperatures the superfluid phonon contribution to $\eta$ starts to dominate the process of r-mode damping. While our results for the instability window are preliminary, as other dissipative processes should be taken into account as well, they differ from previous evaluations of the r-mode damping due to the shear viscosity in superfluid neutron stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call