Abstract

AbstractThrough the Alaska Transportable Array deployment of over 200 stations, we create a 3‐D tomographic model of Alaska with sensitivity ranging from the near surface (<1 km) into the upper mantle (~140 km). We perform a Markov chain Monte Carlo joint inversion of Rayleigh wave ellipticity and phase velocities, from both ambient noise and earthquake measurements, along with receiver functions to create a shear wave velocity model. We also use a follow‐up phase velocity inversion to resolve interstation structure. By comparing our results to previous tomography, geology, and geophysical studies we are able to validate our findings and connect localized near‐surface studies with deeper, regional models. Specifically, we are able to resolve shallow basins, including the Copper River, Cook Inlet, Yukon Flats, Nenana, and a variety of other shallower basins. Additionally, we gain insight on the interaction between the upper mantle wedge, asthenosphere, and active and nonactive volcanism along the Aleutians and Denali volcanic gap, respectively. We observe thicker crust beneath the Brooks Range and south of the Denali fault within the Wrangellia Composite Terrane and thinner crust in the Yukon Composite Terrane in interior Alaska. We also gain new perspective on the Wrangell Volcanic Field and its interaction between surrounding asthenosphere and the Yakutat Terrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.