Abstract

We use a simple nonlinear scaler displacement model to calculate the distribution of effects created by a shear stress on a double-stranded DNA (dsDNA) molecule and the value of shear force F(c) that is required to separate the two strands of a molecule at a given temperature. It is shown that for molecules of base pairs fewer than than 21, the entire single strand moves in the direction of applied force, whereas for molecules having base pairs more than 21, part of the strand moves in the opposite direction under the influence of force acting on the other strand. This result as well as the calculated values of F(c) as a function of length of dsDNA molecules are in very good agreement with the experimental values of Hatch et al. [Phys. Rev. E 78, 011920 (2008)].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.