Abstract
The electrorheology (ER) of suspensions based on polystyrene/polyaniline (PS/PANI) core/shell structured microspheres and those based on disk-like zeolite particles at different electric fields and particle volume fractions have been studied, respectively. Both types of ER fluids showed abrupt shear thickening under high electric fields and low shear rates, as well as shear thinning when the shear rate increased. A normalized method that considers the effects of electric field strength, shear rate and particle volume fraction was proposed to compare the rheological curves of the two ER fluids. The curves evaluated from the normalization method showed similar shear thinning at low shear rates and the hydrodynamic effect at high shear rates. Shear thinning represents the structure destroyed by shearing, and shear thickening at low shear regions indicates the dramatic structure change. The particle volume fraction and structure factor effects demonstrate that the mechanical contact between particles and the wall of the electrodes is crucial to the shear strength of ER fluids, indicating an electric/magnetic field modulated friction mechanism of the ER and magnetorheological (MR) effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.