Abstract

Shear thickening appears as an increase of the viscosity of a dense suspension with the shear rate, sometimes sudden and violent at high volume fraction. Its origin for noncolloidal suspension with non-negligible inertial effects is still debated. Here we consider a simple shear flow and demonstrate that fluid inertia causes a strong microstructure anisotropy that results in the formation of a shadow region with no relative flux of particles. We show that shear thickening at finite inertia can be explained as an increase of the effective volume fraction when considering the dynamically excluded volume due to these shadow regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.