Abstract

We employed a static-incubation assay to determine the intensity of wall shear stress (tau) needed to detach human polymorphonuclear leukocytes (HPMNs) from human umbilical vein endothelial cell (HUVE) monolayers. Confluent monolayers of HUVE were placed in a parallel-plate flow chamber which was mounted on the stage of an inverted tissue culture microscope, attached to a perfusion system and maintained at 37 degrees C. All events in the selected fields were recorded using videomicroscopy. HPMNs were co-incubated for 15 minutes with the HUVE monolayers under control conditions or in the presence of 10(-7) M formyl-methionyl-leucyl-phenylalanine (FMLP). Following this static incubation, a series of five individual flows, each 1 minute in duration, were driven through the flow channel, exposing the cells to 1.0, 2.0, 3.8, 7.6 and 14.8 dyn/cm2 wall shear stresses. Under control conditions, the percentage of HPMNs remaining attached to the HUVE monolayers following exposure to each shear stress was 61, 38, 25, 12 and 5, respectively. In the FMLP-treated condition, the percentage of HPMNs remaining attached to the monolayers was significantly greater than control at all five levels of tau. Thus, under control conditions, adherent HPMNs can be detached from endothelial cell monolayers in vitro with levels of shear stress normally found in the microcirculation (18). In the presence of FMLP, the level of shear stress needed to overcome the adhesions is increased significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.