Abstract

Previous studies have indicated that acute increases in shear stress can stimulate endothelial nitric oxide synthase (eNOS) activity through increased PI3 kinase/Akt signaling and phosphorylation of Ser1177. However, the mechanism by which shear stress activates this pathway has not been adequately resolved nor has the potential role of reactive oxygen species (ROS) been evaluated. Thus, the purpose of this study was to determine if shear-mediated increases in ROS play a role in stimulating Ser1177 phosphorylation and NO signaling in pulmonary arterial endothelial cells (PAEC) exposed to acute increases in shear stress. Our initial studies demonstrated that although shear stress did not increase superoxide levels in PAEC, there was an increase in H2O2 levels. The increases in H2O2 were associated with a decrease in catalase activity but not protein levels. In addition, we found that acute shear stress caused an increase in eNOS phosphorylation at Ser1177 phosphorylation and a decrease in phosphorylation at Thr495. We also found that the overexpression of catalase significantly attenuated the shear-mediated increases in H2O2, phospho-Ser1177 eNOS, and NO generation. Further investigation identified a decrease in PKCdelta activity in response to shear stress, and the overexpression of PKCdelta attenuated the shear-mediated decrease in Thr495 phosphorylation and the increase in NO generation, and this led to increased eNOS uncoupling. PKCdelta overexpression also attenuated Ser1177 phosphorylation through a posttranslational increase in catalase activity, mediated via a serine phosphorylation event, reducing shear-mediated increases in H2O2. Together, our data indicate that shear stress decreases PKCdelta activity, altering the phosphorylation pattern catalase, leading to decreased catalase activity and increased H2O2 signaling, and this in turn leads to increases in phosphorylation of eNOS at Ser1177 and NO generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.