Abstract

Flow patterns in blood vessels contribute to focal distribution of atherosclerosis; the underlying mechanotransduction pathways remain to be investigated. We demonstrate that different flow patterns elicit distinct responses of Krüppel-like factor-2 (KLF2) in endothelial cells (ECs) in vitro and in vivo. While pulsatile flow with a significant forward direction induced sustained expression of KLF2 in cultured ECs, oscillatory flow with little forward direction caused prolonged suppression after a transient induction. The suppressive effect of oscillatory flow was Src-dependent. Immunohistochemical studies on ECs at arterial branch points revealed that KLF2 protein levels were related to local hemodynamics. Such flow-associated expression patterns were also demonstrated in a rat aortic restenosis model. Inhibition of KLF2 with siRNA sensitized ECs to oxidized LDL-induced apoptosis, indicating a protective role of KLF2. In conclusion, differential regulation of KLF2 may mediate the distinct vascular effects induced by various patterns of shear stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.