Abstract

The mechanisms employed by blood vessels in order to adapt to their hemodynamic environment are important for our general understanding of disease and development. Changes in arterial geometry are generally induced by two effects: vasodilation and/or constriction; and growth and remodeling ("G &R"). The first can occur over short periods of a few minutes, while the second usually occurs over timescales of weeks or months. The free radical Nitric oxide (NO) is one of the few biological signaling molecules that is gaseous. When smooth muscle cells internalize NO, they lengthen and ultimately induce a relaxation of the artery. Platelet-Derived Growth Factor (PDGF) is a growth factor released by smooth muscle cells and platelets that regulates cell growth and division. In this paper we present a single-layered, axisymmetric hyperelastic model for a deforming, growing artery in which the opening angle is regulated by NO and growth is induced by PDGF. Our model describes vasodilation and G &R in a long cylindrical artery regulated by a steady-state Poiseuille flow. The transport of NO released by the endothelium is governed by a diffusion equation with a shear-stress dependent flux boundary condition. Arterial opening angle is assumed to be a Hill function of the wall-averaged NO concentration. We find that both growth and NO help to regulate shear stress with respect to the flow rate, but regulation through growth occurs only at large times. In contrast, regulation through NO is immediate but can only occur as long as the opening angle is able to continually decrease as a function of flow rate. Our model is calibrated using experimental data from ligated, control, and anastomosed carotid arteries of adult and weanling rabbits. Our results generate shear stress/flow rate and lumen radius/flow rate curves that agree with experimental data from control and NO-inhibited rabbit carotid arteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.