Abstract

Death associated protein kinase (DAPK) is a positive regulator in tumor necrosis factor α (TNFα)-induced apoptotic pathway, and DAPK expression is lost in cancer cells. In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation and physiological shear stress is protective against apoptosis. Using bovine aortic endothelial cells, we found that DAPK expression increased, while the auto-inhibitory phosphorylation of serine 308 decreased with shear stress at 12 dynes/cm(2) for 6 h. Quantitative RT-PCR revealed a corresponding increase in DAPK mRNA [P < 0.01]. We found that after 18-h TNFα induction, shearing cells for another 6 h significantly reduced apoptosis based on TUNEL staining [P < 0.05], although cell necrosis was not affected. Under the same conditions, we observed significantly decreased overall DAPK, as well as phospho-serine 308 DAPK [P < 0.05] compared to TNFα treatment alone. Caspase-3 and -7 activities downstream of DAPK were also attenuated. Shearing cells alone resulted in enhanced apoptosis, likely due to increased DAPK activity. Our findings were further supported by DAPK siRNA, which yielded contrary results. We present conclusive evidence for the first time that shear stress of up to 6 h up-regulates DAPK expression and activation. However, in the presence of apoptotic stimuli such as TNFα, shear stress caused decrease in DAPK activity. In fact, long-term shear stress of 24 h significantly reduced overall DAPK expression. Our findings strongly support a novel role for DAPK in mediating effects of shear stress in suppressing cytokine-activated apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.