Abstract
Although stretch-activated currents have been extensively studied in isolated cells and intact heart in the context of mechanoelectric feedback (MEF) in the heart, quantitative data regarding other mechanical parameters such as pressure, shear, bending, etc, are still lacking at the multicellular level. Cultured cardiac cell monolayers have been used increasingly in the past decade as an in vitro model for the studies of fundamental mechanisms that underlie normal and pathological electrophysiology at the tissue level. Optical mapping makes possible multisite recording and analysis of action potentials and wavefront propagation, suitable for monitoring the electrophysiological activity of the cardiac cell monolayer under a wide variety of controlled mechanical conditions. In this paper, we review methodologies that have been developed or could be used to mechanically perturb cell monolayers, and present some new results on the acute effects of pressure, shear stress and anisotropic strain on cultured neonatal rat ventricular myocyte (NRVM) monolayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Biomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.