Abstract

It is well established that atherosclerotic plaques generally develop in low shear stress regions, including curved arterial segments and bifurcations1. Once these plaques intrude into the lumen, the shear stress they are exposed to alters with hitherto unknown consequences. We hypothesize that in the more advanced stages of the disease, shear stress has an important impact on plaque composition in such a way that high shear stress enhances plaque vulnerability through its biological impact on the endothelium2. We investigated this hypothesis previously by studying the relationship between shear stress and strain, a marker for plaque composition, in human coronary arteries3. In this study, we will extend that study by investigating how shear stress influences changes of strain, and thus plaque composition, over a period of 6 months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.