Abstract

The purpose of this study was to simultaneously monitor the transcriptional levels of 12 endothelial growth factor genes in response to alterations in wall shear stress (WSS) under conditions relevant to the development of intimal hyperplasia, a major cause of arterial bypass graft failure. Human umbilical vein endothelial cells were preconditioned in vitro under steady flow (WSS, 15 dynes/cm(2)) for 24 hours before being subjected to WSS at 25 (Delta = +10), 15 (Delta = 0), 5 (Delta = -10), 2.5 (Delta = -12.5), and 0 (Delta = -15) dynes/cm(2) or low magnitude WSS reversal (-2.5 dynes/cm(2)) for 6 hours. A focused complementary DNA array was used to simultaneously measure messenger RNA expression levels for END1, endothelial nitric oxide synthase (NOS3), platelet-derived growth factor A, platelet-derived growth factor B (PDGFB), acidic fibroblast growth factor, basic fibroblast growth factor, transforming growth factor-alpha, transforming growth factor-beta, vascular endothelial growth factor, insulin-like growth factor-1, epidermal growth factor, and angiotensin converting enzyme. Preconditioning significantly (P <.05) increased the fold expression of NOS3 (4.1 +/- 1.4), basic fibroblast growth factor (3.90 +/- 1.16), vascular endothelial growth factor (3.39 +/- 1.04), and insulin-like growth factor-1 (2.8 +/- 0.7) but decreased END1 (0.47 +/- 0.05) and PDGFB (0.70 +/- 0.04) messenger RNA expression levels relative to no-flow controls, an effect that was sustained on removal from flow for 6 hours. Notably, the ratio of END1/NOS3 expression was diminished (0.11 +/- 0.03) relative to that of cells maintained in static culture. Although few differences in gene expression from baseline (15 dynes/cm(2)) were measured in cells exposed to either constant (Delta = 0) or step decreases (Delta = -10, -12.5, or -15 dynes/cm(2)) in WSS, marked changes were seen in the group exposed to a step increase in WSS (Delta = +10) or to WSS reversal. Low magnitude retrograde WSS evoked significant (P <.05) transcriptional changes in multiple genes, including elevated END1 (4.1 +/- 0.5), platelet-derived growth factor A (1.5 +/- 0.2), PDGFB (2.3 +/- 0.3), and transforming growth factor-beta (1.5 +/- 0.2) levels, but depressed NOS3 (0.60 +/- 0.17) levels, and a marked increase in END1/NOS3 (6.7 +/- 1.6) when compared with equal magnitude antegrade WSS (2.5 dynes/cm(2)). These results support the implementation of a preconditioning phase for in vitro WSS studies to establish a physiologic baseline. Our findings complement previous macroscale findings and are consistent with a cellular mechanism involving increased END1 and PDGFB levels, but decreased NOS3 levels, leading to intimal hyperplasia at regions of low magnitude reversing WSS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.