Abstract

Loss of significant functional renal mass results in compensatory structural and hemodynamic adaptations in the nephron. While these changes have been characterized in several injury models, how they affect hemodynamic forces at the glomerular capillary wall has not been adequately characterized, despite their potential physiological significance. Therefore, we used intravital multiphoton microscopy to measure the velocity of red blood cells in individual glomerular capillaries of normal rats and rats subjected to ⅚ nephrectomy. Glomerular capillary blood flow rate and wall shear stress were then estimated using previously established experimental and mathematical models to account for changes in hematocrit and blood rheology in small vessels. We found little change in the hemodynamic parameters in glomerular capillaries immediately following injury. At 2 wk postnephrectomy, significant changes in individual capillary blood flow velocity and volume flow rate were present. Despite these changes, estimated capillary wall shear stress was unchanged. This was a result of an increase in capillary diameter and changes in capillary blood rheology in nephrectomized rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.