Abstract
Unsaturated soil interfaces exist where unsaturated soil is in contact with structures such as foundations, retaining walls, and buried pipes. The unsaturated soil interface can be defined as a layer of unsaturated soil through which stresses are transferred from soil to structure and vice versa. In this paper, the shearing behavior of unsaturated soil interfaces is examined using results of interface direct shear tests conducted on a low-plasticity fine-grained soil. A conventional direct shear test device was modified to conduct direct shear interface tests using matric suction control. Further, the results were used to define failure envelopes for unsaturated soil interfaces having smooth and rough counterfaces. Results of this study indicate that matric suction contributes to the peak shear strength of unsaturated interfaces; however, postpeak shear strength did not appear to vary with changes in matric suction. Variations in net normal stress affected both peak and postpeak shear strength. Failure envelopes developed using the soil-water characteristic curve (SWCC) appeared to capture the nonlinear influence of matric suction on shear strength of soil and interfaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.