Abstract

A reliable shear strength model for slender reinforced concrete beams without web reinforcement is described based on fuzzy set theory. The fuzzy-based model was developed to consider the interaction between the shear modeling parameters and the random and non-random uncertainties in these parameters. The parameters were identified essential for modeling shear strength in slender reinforced concrete beams without web reinforcement being: the compressive strength, the effective depth and the tension reinforcement ratio. A total of 385 experimental datasets obtained from shear tests of simply supported reinforced concrete beams from the literature, are used in learning/developing and verification of the proposed model (164 for learning and 221 for verification). The shear strength predicted by the fuzzy-based model was compared to those predicted by current shear strength models suggested by design codes such as the Eurocode 2 (EC2), the American code ACI (318-05), and Canadian code (CSA A23.3-04). The fuzzy-based model yields a significant enhancement in the prediction of the shear strength while still respecting principles of mechanics governing shear failure in concrete beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.