Abstract

An experimental investigation of the shear strengths of composite plate girders, with centrally placed rectangular web cutouts, is described. A series of tests is conducted on short‐span girders having conventional welded stud shear connectors, connecting the composite concrete slabs to the top flanges of the plate girders. These tests indicated that it is the tensile or pullout capacity of the connectors that is primarily responsible for sustaining the composite action under predominantly shear loading. Subsequently, a further series of tests is conducted on short‐span girders with bolted tension connectors, designed to offer negligible resistance to horizontal shear forces at the interfaces between the concrete slabs and plate girders, which confirmed the previous conclusion. Both series of tests indicate that if adequate connectors are provided between a plate girder and a composite concrete slab, the shear strength of the composite girder is significantly higher than that of the plate girder alone. A simple analytical model for predicting the shear strengths of composite plate girders is also presented, which shows satisfactory correlation with the test results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.