Abstract

This note explores the influence of environmental effects, as those induced by cyclic changes in relative humidity, on the degradation of the shear strength parameters in Lilla claystone, a low-porosity clayey rock from northern Spain. The results of a comprehensive experimental programme, combining long-term relative humidity cycling tests with saturated direct shear tests, are described. A continuous monitoring of the evolution of volumetric strain during the previous relative humidity cycling is used to evaluate the swelling behaviour of the rock. Both undisturbed and degraded specimens are subjected to shearing at saturated conditions to determine the peak and post-rupture shear strength envelopes. The effects on rock brittleness and dilation angle are also analysed. Shear strength shows a strong dependence on the history of relative humidity cycling. In particular, the evolution of the peak shear strength parameters (c′ and φ′) seem to be related to the accumulated irreversible strains developed during each cycle. A damage law, recently proposed by the authors, is used to represent the progressive degradation of the shear strength parameters as a function of the accumulated irreversible strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.