Abstract

The internal shear strength of a geosynthetic clay liner (GCL) within composite liner systems is crucial for the stability of landfills and should be carefully considered in the design. To explore the shear strength and failure mechanism of the extensively used needle-punched GCL, a series of displacement-controlled direct shear tests with five normal stress levels (250–1000 kPa) and eight displacement rates (1–200 mm/min) were conducted. The shear stress to horizontal displacement relationships exhibit well-defined peak shear strengths and significant post-peak strength reductions. The monitoring results of the thickness change indicate that the degree of volumetric contraction is related to the reorientation of fibers and dissipation of pore water pressure. Furthermore, the peak and residual shear strengths both depend on the displacement rate because of the rate-dependent tensile stiffness of needle-punched fibers and shear strength of the soil/geosynthetic interface. Through additional tests and lateral comparison, it was discovered that the shear behavior of sodium bentonite, degree of hydration, and pore water pressures all affect the shear mechanisms of the NP GCL. In particular, the failure mode transfers from fiber pullout to fiber rupture with the increase in water content as the hydrated bentonite particles facilitate the stretching of needle-punched fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call