Abstract

The shear behavior and drainage characteristics of coal-fouled ballast when treated with elastomeric polyurethane are assessed by means of large-scale direct shear and permeability tests. The results from direct shear tests confirmed that the shear strength of both stabilized and unstabilized coal-fouled ballast was highly influenced by the extent of fouling (VCI: void contamination index). The performance index (PI) of elastomer-stabilized coal-fouled ballast (ESFB), determined as the fraction of shear strength of fouled ballast to the shear strength of fresh and unstabilized ballast, lies in the range of 1.23 to 0.84. Moreover, the performance of ESFB having VCI ≥30% was found to be either similar to or poorer than that of clean ballast without any treatment, thus indicating that the elastomer treatment may be provided only to ballast with VCI ≤30%. The results from constant head permeability tests indicate that the hydraulic conductivity of ballast ( k) is highly influenced by the presence of fouling materials but is only slightly reduced as a result of the elastomer stabilization. The k of ballast decreased from 43 to 0.18 mm/s as the VCI increased from 0 to 75%. For VCI ≥ 45% the k of ballast was found to be lower than that recommended for sub-ballast. On the other hand, the k of ballast reduced slightly from 43 to 37 mm/s because of the elastomer stabilization. Furthermore, an empirical relationship is established between k and e to determine the k of both stabilized and unstabilized fouled ballast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call