Abstract

The stabilization of grain boundaries (GBs) is beneficial for improving the stability and mechanical properties of nanocrystalline (NC) metals. Molecular dynamics (MD) calculations were performed to investigate the shear response of Ni [Formula: see text]17 [110](223) symmetrical tilt GB. It was found that under the action of shear, the nucleation and evolution of the GB source Shockley partial dislocations ultimately result in the low-energy-state transformation of the GB structure units (SUs). However, the Ag atom contained in the GB increases the shear stress and strain required for the GB relaxation, and the strain range for the GB relaxation is expanded, indicating the inhibitory effect of the Ag atom on the structural relaxation of Ni [Formula: see text]17 [110](223) GB. As the temperature increases from 10 K to 250 K, the structural relaxation of Ni [Formula: see text]17 [110](223) GB becomes easier to proceed. In addition to segregation-induced GB stabilization, strain-induced GB relaxation and the roles of foreign atom and temperature clarified in this work could provide several new entry points for stabilizing high-energy GBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call