Abstract

A rotary motor combined with fibrous string demonstrates excellent performance because it is powerful, lightweight, and prone to large strokes; however, the stiffness range and force-generating capability of twisted string transmission systems are limited. Here, we present a variable stiffness artificial muscle generated by impregnating shear stiffening gels (STGs) into a twisted string actuator (TSA). A high twisting speed produces a large impact force and causes shear stiffening of the STG, thereby improving the elasticity, stiffness, force capacity, and response time of the TSA. We show that at a twisting speed of 4186 rpm, the elasticity of an STG-TSA reached 30.92 N/mm, whereas at a low twisting speed of 200 rpm, it was only 10.51 N/mm. In addition, the STG-TSA exhibited a more prominent shear stiffening effect under a high stiffness load. Our work provides a promising approach for artificial muscles to coactivate with human muscles to effectively compensate for motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.