Abstract

Langevin dynamical simulations are performed to study the elastic behaviors of two-dimensional (2D) solid dusty plasmas under the periodic shear deformation. The frequency- and strain-dependent shear moduli G(ω,γ) of our simulated 2D Yukawa solid are calculated from the ratio of the shear stress to strain in different orientations. The shear-softening and -hardening properties in different lattice orientations are discovered from the obtained G(ω,γ). The component of the elastic constant tensor corresponding to the shear deformation is also calculated, whose variation trend exactly agrees with the discovered shear-softening and -hardening features in different shear directions. It is also found that the shear modulus of the 2D Yukawa solid always increases monotonically with the frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.