Abstract

We investigate the rheological characteristics of ternary amphiphilic gyroid, diamond and primitive cubic phases under applied Couette flow simulated using a kinetic lattice–Boltzmann model and periodic Lees–Edwards boundary conditions. The simulated rheological response of the cubic phases is compared to experimental observations in lyotropic liquid crystals. We relate the variations in the non-Newtonian response and deformation under strain in these cubic phases to their triply bicontinuous cubic morphologies as well as to the differences in the interaction parameters between the three species present in the amphiphilic system. The large system sizes allow simulation of multiple domains which elucidate the correlation between the evolution of the defect texture and the change in the stress field of the cubic phase under applied Couette flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.