Abstract
We computationally study the behavior of the diffusion coefficient D in granular flows of monodisperse and bidisperse particles spanning regions of relatively high and low shear rate in open and closed laterally confined heaps. Measurements of D at various flow rates, streamwise positions, and depths collapse onto a single curve when plotted as a function of γd2, where d is the local mean particle diameter and γ is the local shear rate. When γ is large, D is proportional to γd2, as in previous studies. However, for γd2 below a critical value, D is independent of γd2. The acceleration due to gravity g and particle stiffness (or, equivalently, the binary collision time t(c)) together determine the transition in D between regimes. This suggests that while shear rate and particle size determine diffusion at relatively high shear rates in surface-driven flows, diffusion at low shear rates is an elastic phenomenon with time and length scales dependent on gravity (sqrt d/g) and particle stiffness (t(c)sqrt(dg), respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.