Abstract

A shear mode thin film bulk acoustic resonator (FBAR) operating in liquid media together with a microfluidic transport system is presented. The resonator has been fabricated utilizing a recently developed reactive sputter-deposition process for AlN thin films with inclined c-axis relative to the surface normal with a mean tilt of around 30°. The resonator has a resonance frequency of around 1.2 GHz and a Q value in water of around 150. Sensor operation in water and glycerol solutions is characterized. Theoretical analysis of the sensor operation under viscous load as well as of the sensitivity and stability in general is presented. The theoretical predictions are compared with experimental measurements. The results demonstrate clearly the potential of FBAR biosensors for the fabrication of highly sensitive low cost biosensors, bioanalytical tools as well as for liquid sensing in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.