Abstract

Simulations of monodisperse and polydisperse (μ 2(A) = 0.13±0.002) 2D foam samples undergoing simple shear are performed using the 2D viscous froth (VF) model. These simulations clearly demonstrate shear localisation. The dependence of localisation length on the product λV (shearing velocity V times the wall drag coefficient λ) is examined and is shown to agree qualitatively with published experimental data. A wide range of localisation lengths is found at low λV, an effect which is attributed to the existence of distinct yield and limit stresses. The general continuum model is extended to incorporate such an effect and its parameters are subsequently related to those of the VF model. A Herschel–Bulkley exponent of a = 0.3 is shown to accurately describe the observed behaviour. The localisation length is found to be independent of λV for monodisperse foam samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call