Abstract

A full scale, single lane test bridge was used to evaluate a typical slab-on-girder bridge's response to shear. The results of the shear load test provided the means to evaluate the level of detail for a finite element model that is required to accurately replicate the behavior of bridges subject to shear loads. This finite element modeling scheme was then used to evaluate more than 200 finite element bridge models. The bridge models investigated the effects of girder spacing, span length, overhang distance and skew angle on the shear live-load distribution factor. The finite element shear distribution factors were compared with those calculated according to the American Association of State Highway and Transportation Officials load and resistance factor design (AASHTO LRFD) specifications. It was found that the AASHTO LRFD procedure accurately predicted the shear distribution factor for changes in girder spacing and span length. However, the LRFD shear distribution factor for the exterior girder was found to be unconservative for certain overhang distances and overly conservative for the interior girder for higher skew angles. Alternative equations are provided for the single and multilane exterior girder correction factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call