Abstract

Segmentation of solid propellant rocket motors has been demonstrated to be a source of unpredicted and undesirable pressure and thrust oscillations. Surface discontinuities are the primary cause of these vortex-shedding-driven oscillations, which result from a strong coupling between the shear layer instability and the acoustic motion in the chamber. The analysis of an axisymmetric geometry corresponding to a {1\over 15} subscale P230 motor of the Ariane 5 rocket is numerically computed. With a suitable mesh for the viscosity value studied, the aeroacoustics in the chamber is fully described. A coupling between the hydrodynamic instability and the organ-pipe acoustic mode is clearly demonstrated. The mechanism for frequency selection is discussed. © 1997 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call