Abstract

Under applied stress, the viscosity of many dense particulate suspensions increases drastically, a response known as discontinuous shear-thickening (DST). In some cases, the applied stress can even transform the suspension into a solid-like shear jammed state. Although shear jamming (SJ) has been probed for dense suspensions with particles having well-defined shapes, such a phenomenon for fractal objects has not been explored. Here, using rheology and in situ optical imaging, we study the flow behaviour of ultra-dilute fractal suspensions of multi-walled carbon nanotubes (MWCNT) under confinement. We show a direct transition from flowing to SJ state without a precursory DST in fractal suspensions at an onset volume fraction, ϕ ∼ 0.5%, significantly lower than that of conventional dense suspensions (ϕ ∼ 55%). The ultra-low concentration enables us to demonstrate the fragility and associated contact dynamics of the SJ state, which remain experimentally unexplored in suspensions. Furthermore, using a generalized Wyart-Cates model, we propose a generic phase diagram for fractal suspensions that captures the possibility of SJ without prior DST over a wide range of shear stress and volume fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.