Abstract

Abstract Instability within internal solitary waves (ISWs), featured by temperature inversions with vertical lengths of dozens of meters and current reversals in the upper shoreward velocity layer, was observed in the northern South China Sea at a water depth of 982 m by using mooring measurements between June 2017 and May 2018. Regions of shear instability satisfying Ri < 1/4 were found within those unstable ISWs, and some large ISWs were even possibly in the breaking state, indicated by the ratio of Lx (wave width satisfying Ri < 1/4) to λη/2 (wavelength at half amplitude) larger than 0.86. Wave stability analyses revealed that the observed wave shear instability was induced by strong background current shear associated with multiscale dynamic processes, which greatly strengthened wave shear by introducing sharp perturbations to the fine-scale vertical structures of ISWs. During the observational period, wave shear instability was strong in summer (July–September) while weak in winter (January–March). Sensitivity experiments revealed that the observed shear instability was prone to be triggered within large ISWs by the background current shear and sensitive to the pycnocline depth in the background stratification. However, shear instability within ISWs was observed to be promoted during mid-January, as the near-inertial waves trapped inside an anticyclonic eddy resulted in enhanced background current shear between 150 and 300 m. This work emphasizes the notable impacts of multiscale background processes on ISWs in the oceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.