Abstract

The effects of long chain branching on the nucleation density enhancements and morphological evolution for polylactide (PLA) materials during shear-induced isothermal crystallization process were thoroughly investigated by using rotational rheometer and polarized optical microscopy (POM). Shear-induced nucleation density enhancements for the long chain branched PLA (LCB PLA) were studied on the basis of the determination of the critical shear rate, for which the stretch of the longest chains of the linear component is expected. The results of shear-induced isothermal crystallization kinetics show that the crystallization process under shear is greatly enhanced compared to the quiescent conditions and the crystallization kinetics is accelerated with the increases in shear rate and/or shear time. LCB PLA crystallizes much faster than linear PLA under the same shear condition. A saturation effect of shear time on crystallization kinetics is observed for both linear PLA and LCB PLA. In-situ POM observations d...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call