Abstract

Biomembranes feature phospholipid bilayers and serve as the interface between cells or organelles and the extracellular and/or cellular environment. Lipids can move freely throughout the membrane; the lipid bilayer behaves like a fluid. Such fluidity is important in terms of the actions of membrane transport proteins, which often mediate biological functions; membrane protein motion has attracted a great deal of attention. Because the proteins are small, diffusion phenomena are often in play, but flow-induced transport has rarely been addressed. Here, we used a dissipative particle dynamics approach to investigate flow-induced membrane protein transport. We analyzed the drift of a membrane protein located within a vesicle. Under the influence of shear flow, the protein gradually migrated toward the vorticity axis via a random walk, and the probability of retention around the axis was high. To understand the mechanism of protein migration, we varied both shear strength and protein size. Protein migration was induced by the balance between the drag and thermodynamic diffusion forces and could be represented by the Péclet number. These results improve our understanding of flow-induced membrane protein transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call