Abstract

This paper addresses the cross-stream migration of rigid rods undergoing diffusion and advection in parabolic flow between flat plates – a simple model of a polymer that possesses internal (rotational) degrees of freedom for which the probability distribution depends upon the local shear rate. Unequivocal results on the observable concentration profiles across the channel are obtained from a finite–difference solution of the full Fokker–Planck equation in the space of lateral position y and azimuthal angle φ, the polar angle θ being constrained toπ/2for simplicity. Steric confinement and hydrodynamic wall effects, operative within thin boundary layers, are neglected. These calculations indicate that rods shouldmigrate toward the walls.For widely separated rotational and translational timescales asymptotic analysis gives effective transport coefficients for this migration. Based upon angular distributions at arbitrary rotational Péclet number – obtained here by a least–squares collocation method using trigonometric basis functions – accumulation at the walls is confirmed quantitatively by the effective transport coefficients. The results are extended to free rotation using spherical harmonics as the basis functions in the (φ, θ) orientation space. Finally, a critique is given of the traditional thermodynamic arguments for polymer migration as they would apply to purely rotational internal degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.