Abstract

We investigate the spatiotemporal behavior of sheared suspensions of rodlike particles with permanent dipole moments. Our calculations are based on a self-consistent hydrodynamic model including feedback effects between orientational motion and velocity profile. The competition between shear-induced tumbling motion and the boundary conditions imposed by plates leads to oscillatory alignment structures. These give rise to a spontaneous time-dependent polarization generating, in turn, magnetic fields. This novel shear-induced effect is robust against varying the boundary conditions. The field strengths are of a measurable magnitude for a broad parameter range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call