Abstract

The friction of a copper surface, which is exposed to diethyl disulfide (DEDS), dimethyl disulfide (DMDS) or dimethyl trisulfide (DMTS) while rubbing by a tungsten carbide pin, are explored in an ultrahigh vacuum tribometer to investigate the effect of the sulfur-to-carbon stoichiometry on gas-phase lubrication. Surface analyses by Auger spectroscopy of the wear scars after rubbing reveal that the amount of sulfur increases with sulfur content of the gas-phase lubricant, as anticipated. It is found that the friction reduction depends on the normal load, where the friction coefficient tends to decrease more at lower loads, and that the load at which the most friction-reducing tribofilm is formed depends on the stoichiometry of the gas-phase lubricant. DEDS (with a sulfur to carbon ratio of 0.5) only reduces the friction coefficient to a minimum value of ∼0.28 at a normal load of 0.25 N, for DMDS (S/C = 1.0) friction is reduced to ∼0.28 for loads below ∼0.7 N, and DMTS (S/C = 1.5) reduces friction to this value for all loads tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.