Abstract

Analogue models have been used to investigate the influence of planar mechanical anisotropy on the orientation of shear fractures in an elastoviscous-brittle material. Multilayered models consisting of a mixture of plasticine, vaseline and preferentially-oriented paper flakes have been coaxially deformed for this purpose. The evolution of the orientation, length and connectivity of fracture sets has been systematically analysed with progressive coaxial deformation. The experimental results show that the orientation of fractures with respect to the deformation axes depends on the orientation of transverse anisotropy. Two symmetrical sets of shear fractures are formed in models with layering parallel to the extension axis X, while the fracture network is asymmetrical with respect to the deformation axes for cases with oblique anisotropy. The average dihedral angles between fracture sets are higher than 100°, with the obtuse bisector between the two sets oriented perpendicular to layers. The stress fields calculated from fracture data differ from the boundary conditions applied by the deformation apparatus. This misorientation is related to the degree of anisotropy. In models with high oblique anisotropy both fracture arrays rotate in a dextral sense together with layers towards the X-axis, indicating that the presence of a strong anisotropy controls their evolution with progressive deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.