Abstract

Shear force near-field microscopy on biological samples in their physiological environment loses considerable sensitivity and resolution as a result of liquid viscous damping. Using a bimorph-based cantilever sensor incorporating force feedback, as recently developed by us, gives an alternative force detection scheme for biological imaging in liquid. The dynamics and sensitivity of this sensor were theoretically and experimentally discussed. Driving the bimorph cantilever close to its resonance frequency with appropriate force feedback allows us to obtain a quality factor (Q-factor) of up to 10(3) in water, without changing its intrinsic resonance frequency and spring constant. Thus, the force detection sensitivity is improved. Shear force imaging on mouse brain sections and human skin tissues in liquid with an enhanced Q-factor of 410 have shown a high sensitivity and stability. A resolution of about 50 nm has been obtained. The experimental results suggest that the system is reliable and particularly suitable for biological cell imaging in a liquid environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.