Abstract
For flexible robots with rotational joints it has been shown previously by Luo (1993), that direct strain feedback can damp out vibrations very satisfactorily. In this paper, a simple sensor-based output feedback control law, called shear force feedback, is newly proposed to control vibrations arising from structural flexibility of robots of Cartesian or SCARA types. Closed-loop exponential stability of such shear force feedback system is proved. Experimental results on set point control and trajectory tracking control are reported. It is found that the simple PI+shear force feedback can yield good performance for both robot motion and vibration suppression.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.