Abstract

A shear-flexible finite element based on an orthogonal Cartesian coordinate system is developed for the flexural and buckling analyses of thin-walled composite I-beams with both doubly and mono-symmetrical cross-sections. Using the first-order shear deformable beam theory, the derived element includes both the transverse shear and the restrained warping induced shear deformations. Governing equations are derived from the principle of minimum total potential energy. Three different types of finite elements, namely, linear, quadratic and cubic elements are developed to solve the governing equations. The geometric stiffness for the buckling analysis of axially loaded, thin-walled composite beams is developed. The resulting linearized buckling problem is solved using a shifted inverse iteration algorithm. A parametric study of the effects of the aspect ratio and the fibre orientation on the tip displacement is presented. The convergence of the elements is also investigated. The elastic buckling loads for mono- and doubly-symmetric I-beam cross-sections are compared with other results available in the literature and with solutions using shell elements in a commercially available finite element program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.