Abstract

Liquid phase exfoliation of two-dimensional (2D) materials from their bulk counterparts has attracted a lot of attention due to its applications in the large-scale synthesis of these materials. Herein, detailed molecular dynamics simulations to understand the exfoliation process of graphene followed by an in-situ exfoliation experiment of graphite suspended in polyacrylonitrile (PAN) using a well-known electro-spinning technique were performed. Submicron-scale fibers reinforced with graphene exhibited multi-fold improvements in terms of mechanical (stiffness, elastic modulus), thermal (degradation temperature) and electrochemical (ionic conductivity) properties. This method is a unique way of synthesizing in-situ composites with large lengths and submicron-diameter fibers. The present technique and the key ideas can be readily extended to other 2D materials as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.