Abstract

This paper conducted theoretical and numerical investigations on shear elastic buckling formulas of stiffened corrugated steel plate shear walls (SCSPSWs) considering torsional rigidities of stiffeners. Firstly, based on the orthotropic plate theory and the energy method, a theoretical model for the derivation of elastic buckling coefficients was established, introducing the torsional strain energy term of the stiffeners. On this basis, the variation law of the elastic buckling coefficient of the walls concerning the stiffener positions was studied, determining the optimal layout of the stiffeners. The formula for calculating the elastic buckling coefficient at any stiffener layout was provided. Furthermore, based on the stiffeners arranged in the optimal layout, the transition torsional rigidity of the stiffeners was determined, and the formulas for the elastic buckling coefficient of the SCSPSW with stiffeners considering torsional rigidity were proposed, in which the enhancement of torsional constraints provided by the stiffeners was measured by an enhancement factor. Finally, eigenvalue buckling analyses were performed based on finite element models to validate the theoretical analysis results on the optimal stiffener layout and elastic buckling coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.