Abstract

A circular, shear-driven pumping system combined with Fourier Transform detection has been developed for the application of chip based cyclic chromatography. Using this system, it is possible to perform an injection of a sample plug into a circular micro-channel and then drive the sample through the channel, using shear flow induced by a rotation stage. High pumping rates at uniform speeds are attainable with this system with very little heat production. Typical pumping rates of up to 1.423 mm s(-1) +/- 2 microm s(-1) were used in experiments although much higher rates >14 mm s(-1) are also possible with this system. Fluorescence detection was used to detect a sample plug of Coumarin dyes, flowing around the channel. A coating of porous polymethacrylate was used to immobilise RP-HPLC beads onto the glass surface and was applied to the glass micro-channel by selective photopolymerisation. This coating acted as a stationary phase and differences in retention time were observed for an injection of Coumarin dyes for different methanol-water, mobile phase ratios. Full sample retention occurred for 30 : 70 (v/v) methanol-water whereas no retention occurred for 92 : 8 (v/v) methanol-water which can be expected for such a reverse phase, open tubular system. Fourier transform detection applied to the fully retained and non-retained cases showed frequency domain data from a single detection point corresponding to that which may be expected from shear flow theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.