Abstract

Over the mid-Atlantic shelf of the North America, there is a pronounced shoreward intrusion of the saltier slope water along the seasonal thermocline, whose genesis remains unexplained. Taking note of the observed broad-band baroclinic motion, we postulate that it may propel the saline intrusion via the shear dispersion. Through an analytical model, we first examine the shear-induced isopycnal diffusivity (“shear diffusivity” for short) associated with the monochromatic forcing, which underscores its varied even anti-diffusive short-term behavior and the ineffectiveness of the internal tides in driving the shear dispersion. We then derive the spectral representation of the long-term “canonical” shear diffusivity, which is found to be the baroclinic power band-passed by a diffusivity window in the log-frequency space. Since the baroclinic power spectrum typically plateaus in the low-frequency band spanned by the diffusivity window, canonical shear diffusivity is simply 1/8 of this low-frequency plateau — independent of the uncertain diapycnal diffusivity. Applied to the mid-Atlantic shelf, this canonical shear diffusivity is about 20m2s−1, which is sufficient to account for the observed tracer dispersion or saline intrusion in the thermocline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call