Abstract

This study presents test results of simply supported concrete beams longitudinally reinforced either by steel or glass fiber-reinforced polymer (GFRP). A total of sixteen large-scale concrete beams with steel stirrups were constructed and tested under four-point monotonic loading until failure. Half of the beams were longitudinally reinforced with GFRP bars, while the other half was reinforced with conventional steel bars as control specimens. To examine the shear behavior of the GFRP reinforced concrete (RC) beams, the main parameters investigated in the study included shear span-effective depth ratios, longitudinal reinforcement ratios and stirrup ratios. Two modes of failure, namely flexure and shear were observed. Due to low modulus elasticity of FRP bars, it was found that lesser shear strength resulted in concrete beams reinforced with GFRP bars compared to beams reinforced with steel bars. Moreover, the influence of the shear span-effective depth ratios and longitudinal reinforcement ratios significantly affect the distribution of internal forces in GFRP reinforced concrete beams. The test results correlated well with the prediction values provided by standard codes and design guidelines except in the case of GFRP reinforced concrete beams failed on shear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.