Abstract

Purpose. This study was conducted to evaluate the effects of different phosphate monomer-containing primers on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and MDP-containing self-adhesive resin cement. Materials and Methods. Y-TZP ceramic surfaces were ground flat with #600-grit SiC paper and divided into six groups (n = 10). They were treated as follows: untreated (control), Metal/Zirconia Primer, Z-PRIME Plus, air abrasion, Metal/Zirconia Primer with air abrasion, and Z-PRIME Plus with air abrasion. MDP-containing self-adhesive resin cement was applied to the surface-treated Y-TZP specimens. After thermocycling, a shear bond strength test was performed. The surfaces of the Y-TZP specimens were analyzed under a scanning electron microscope. The bond strength values were statistically analyzed using one-way analysis of variance and the Student–Newman–Keuls multiple comparison test (P < 0.05). Results. The Z-PRIME Plus treatment combined with air abrasion produced the highest bond strength, followed by Z-PRIME Plus application, Metal/Zirconia Primer combined with air abrasion, air abrasion alone, and, lastly, Metal/Zirconia Primer application. The control group yielded the lowest results (P < 0.05). Conclusion. The application of MDP-containing primer resulted in increased bond strength between Y-TZP ceramics and MDP-containing self-adhesive resin cements.

Highlights

  • Yttria-tetragonal zirconia polycrystal (Y-TZP) that is currently used in restorative dentistry contains over 90% zirconium oxide without silica [1]

  • Previous studies have proven that air abrasion provides micromechanical bonding and that the use of resin cements that consist of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) strengthens the bonds [5,6,7]

  • Ceramic disks of 4 mm thickness, 19 mm diameter, and 100 mm height were obtained by sectioning Y-TZP blocks, which were composed of 97% zirconium dioxide stabilized with a 3% Yttria-Lava Frame

Read more

Summary

Introduction

Yttria-tetragonal zirconia polycrystal (Y-TZP) that is currently used in restorative dentistry contains over 90% zirconium oxide without silica [1]. Y-TZP provides higher fracture toughness and strength compared to other dental ceramics [2]. Unlike other silica-based ceramics, Y-TZP shows a critical weakness in failing to form reliable and durable bonds due to its resistance to hydrofluoric-acid etching [2]. Predictable cementation is one of the most important factors for achieving clinical success with any restorative material, including Y-TZP [3]. The cementation method using mechanical and chemical adhesion remains controversial for Y-TZP, unlike for glass or alumina-based ceramics [4]. Previous studies have proven that air abrasion provides micromechanical bonding and that the use of resin cements that consist of 10-methacryloyloxydecyl dihydrogen phosphate (MDP) strengthens the bonds [5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call