Abstract

The aim of this study was to evaluate the shear bond strength to dentin of primary molars of a new self-adhering flowable resin composite with two ionomer-based cements and one flowable resin composite in combination with two different adhesive systems. Fifty primary molars were grinded on the occlusal surface to obtain flat dentin substrate and randomly divided into 5 groups (n = 10): OFL:Phosphoric Acid/Optibond FL/Premise Flow; OAO:Optibond All-In-One/Premise Flowable; II:Polyacrylic Acid/Fuji II; IX:Polyacrylic Acid/Fuji IX; V:Vertise Flow. Cylinders (3mm diameter - 5mm height) of restorative material were built-up in three increments over the dentin surfaces. A shear load was applied until failure. Bond strength values were statistically analysed with Kruskall-Wallis ANOVA followed by Dunn's test (P < .05). Differences in failure mode distribution were assessed with Chi-square (P < .05). OFL and OAO recorded significantly higher bond strengths than the other groups. Adhesive failures were evident in all groups except OFL and OAO, in which also cohesive failures in dentin were observed. Vertise Flow established on primary dentin bond strengths values similar to those of glass ionomer cements routinely used for restorations of primary teeth. The combination of flowable resin with etch-and-rinse or all-in-one adhesives obtained higher bond strength values, thus involving a more complex handling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.