Abstract

Introduction: The aim of this study was to compare the shear bond strength at the resin/bracket interface of metal brackets sandblasted with aluminum oxide particles of 25 µm, 50 µm and 110 µm. Materials and Methods: Sixty metal brackets were recycled and randomly assigned into four groups according to the aluminum oxide (Al2O3) particle size (µm) used during sandblasting. Brackets of the first three groups (Group 1, n = 15; Group 2, n = 15 and Group 3, n = 15) were sandblasted with 25µm, 50µm, and 110µm Al2O3 particle size, respectively. The control group (Group 4, n = 15) included brackets without sandblasting. Shear bond strength was evaluated before and after sandblasting. Brackets with some variation in shape or structure were excluded. Intragroup and intergroup comparisons were performed with paired t-test and one-way analysis of variance (ANOVA) followed by Scheffe test, respectively. Results: The recycled sandblasted brackets showed greater shear bond strength approximately 4 to 6 Mpa more than those that did not receive sandblasting. There were no statistically significant differences between the sandblasted groups (P > 0.05). However, Group 3 (110µm) showed a numerically greater mean value of shear bond strength (9.34 ± 4.18 Mpa). Conclusion: Similar share bond strength at the resin/bracket interface can be expected after bracket sandblasting with 25µm, 50µm, and 110µm Al2O3 particle size. Independently of the particle size used, the sandblasted brackets showed greater shear bond strength than brackets without sandblasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.