Abstract

This study investigated the shear bond strength (SBS) and interface between a resin composite and a new high-viscous glass ionomer cement (HV-GIC), a HV-GIC, a resin-modified glass ionomer cement (RM-GIC), a bulk-fill flowable composite, and a regular flowable composite bonded with various adhesive systems. A resin composite (Filtek Z350) was bonded to a new HV-GIC (EQUIA Forte Fil) using various adhesive systems, including a universal adhesive in self-etch and etch-and-rinse mode (Scotchbond Universal), a two-step etch-and-rinse adhesive (Scotchbond 1-XT), a one-step self-etch adhesive (Optibond All-in-one) tested also after silane application (Monobond Plus), and a coating material (EQUIA Forte Coat). The resin composite was also bonded to a HV-GIC (Fuji IX GP), a RM-GIC (Fuji II LC), a bulk-fill flowable composite (SDR), and a regular flowable composite (Tetric Evo Flow) with the universal adhesive in self-etch mode (Scotchbond Universal). Two-way ANOVA followed by Dunnett's post hoc test was used to investigate the difference in SBS. Failures were analyzed by chi-square test. Bonding interfaces were examined by environmental scanning electron microscopy (E-SEM). SBS to EQUIA Forte Fil was significantly lower with Scotchbond 1-XT than with all other adhesive systems. By using Scotchbond Universal with the self-etch technique, the SBS to EQUIA Forte Fil was significantly higher than the SBS to Fuji IX GP and significantly lower than the SBS to Fuji II LC, SDR, and Tetric Evo Flow. E-SEM images showed an intimate contact at all interfaces examined. EQUIA Forte Fil showed satisfactory SBS and interfaces with all adhesives tested. Bonding between the resin composite and HV-GIC can be achieved using a universal adhesive in self-etch mode, an easy-to-use adhesive system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call